
Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

124

Physics Simulation

4	 Physics Simulation
Introduction

Up to now, we have been dealing with semi-static objects that do not move or rotate unless controlled by
some script. In this chapter, we introduce physics simulation, an important function of any game engine.
Physics simulation gives the objects realistic behavior and hence helps us making better, more fun games.

After completing this chapter you should be able to:

-- Use basic physics functions such as gravity and collision detection
-- Make physics-enabled vehicles (cars)
-- Create physical player character
-- Use ray casting to simulate shooting
-- Make physics projectiles
-- Simulate explosions and destruction
-- Create breakable objects

4.1	 Gravity and Collision Detection

In previous chapters, we were able to simulate gravity by setting a ground reference and moving the
towards it as the time goes. In this chapter we make advantage of built-in physics simulator in Unity. To
apply physical characteristics to an object, we need to add two components: Collider and Rigid Body. All
basic shapes in Unity have colliders by default. For example; if you add a sphere object, you can notice
that it has a Sphere Collider component attached to it as in Illustration 43.

Illustration 43: The Collider component

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

125

Physics Simulation

The shape of the collider is independent from the shape of the object itself. Consequently, it is possible
to have an object that looks as cube but behaves physically as sphere. It is also possible to position the
center of the collider away from the center of the shape, or scale its size to make it larger or smaller than
the visible object. These modifications can be made by setting the values of Center and Radius variables
of the collider. Once an object has a collider, it becomes a solid entity that collides with other objects
in the scene. However, collisions between objects can be detected and resolved only when the objects
are under the control of the physics simulator. This fact justifies why colliders have had no effect in our
previous examples, even they existed in all objects we have made.

The second important component for physics simulation is the rigid body, which is shown in Illustration
44. When this component is added to the object, it makes it become physically active. This component
has a collection of interesting properties, which we are going to discuss soon.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

126

Physics Simulation

Illustration 44: The Rigid Body component

To illustrate the role each property plays in the rigid body, make a simple scene like the one in
Illustration 45. All objects in the scene have colliders by default, and we are going to add rigid body
components to the four balls; so that they become affected by gravity and other forces.

To add a rigid body to an object; first select the object from the hierarchy, then go to Component > Physics > Rigid Body.

Illustration 45: A simple scene to demonstrate the properties of the rigid body

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

127

Physics Simulation

The first important property of the rigid body is Drag, which is the amount of air resistance applied to
the object while moving. Larger air resistance leads to faster lose of speed for the object. To test the effect
of the drag, set the drag value for the balls to 0.1, 1.5, 0.2 and 2.5 starting from the top most ball. If you
run the game now, all balls fall down, and each one of them moves along its track. You can notice that
the balls with smaller drag values move faster and fall from the edge of the track, while the balls with
larger drag values stop moving before reaching the end of the track. This result is shown in Illustration 46,
and it can also be seen in scene13 in the accompanying project.

Illustration 46: The effect of the drag on the movement of the objects: upper balls have lower drag values

The second important property of the rigid body is its mass. The mass of the rigid body determines how
strong is the gravity force applied to it. However, it does not affect the velocity in which the object moves
downwards. The next example is show in Listing 47. The scene consists of four cubes with a mass of 0.25
(250 gram) for each one, and four balls with masses of 10, 7.5, 5 and 1, starting from the top most ball.

Illustration 47: A scene to demonstrate the effect of the mass of the rigid body

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

128

Physics Simulation

When the game runs, we expect each one of the balls to move along the track, hit the cube, and push it
to some distance before both of them stop (or fall off the edge of the track). However, we want restrict
the movement of the balls as well as the cubes to x and y axes only, to prevent the ball from falling from
the side of the track. This is possible by setting the constraints of the rigid body components attached
to the balls as well as the cubes. What we need to do is to freeze the movement on the z axis, and freeze
the rotation around the y axis. The freeze of the rotation is important for the cubes, in order to keep
their orientation when they are hit by the balls. The constraints of all rigid bodies of balls and cubes
should look like Illustration 48.

Illustration 48: Movement and rotation constraints of the rigid body

The four balls have different masses, but they have the same drag. Therefore, when the game runs all
balls start to move with equal velocity along the track. The effect of the mass appears when a ball collides
with the cube. The ball with greater mass is going to push the cube for longer distance before both of
them stop due to friction force. The result you are going to see is similar to Illustration 49. This demo
can be viewed in scene14 in the accompanying project.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

129

Physics Simulation

Illustration 49: The effect of the mass on the rigid body: upper balls have greater masses, and the cubes
have equal masses

The physics simulator detects collisions between objects and resolves them physically by moving and
rotating objects in a manner that would be exposed by similar objects in the real world. In our part, we
might need to know when these objects collide with each other, in order to perform some actions in
code based on the collisions. For example, when a rocket hits a target, it must be destroyed. Our next
example consists of four balls and two cubes shaped as planes as in Illustration 50. The balls have rigid
bodies attached, while the planes do not.

Illustration 50: A scene to demonstrate collision detection and handling in code

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

130

Physics Simulation

Before jumping to code, we have to set Is Trigger property in the collider of the upper plane to true.
Trigger colliders are different in terms of collision resolution. The physics simulator tells us when an
object collides with a trigger, but it does not handle this collision physically. In other words, when a ball
hits the upper plane it is going to simply keep falling; as the trigger does not block the movement of other
objects. Now we want to write a script in which we are going to handle the collisions between a ball and
the other objects. The script is shown in Listing 40, and we are going to attach it to all balls in the scene.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class ColorBall : MonoBehaviour {

5.

6.	 //Color of the ball

7.	 public Color color;

8.

9.	 void Start () {

10.	 renderer.material.color = color;
11.	 }

12.

13.	 void Update () {

14.

15.	 }

16.

17.	 //To handle collision with solid colliders

18.	 void OnCollisionEnter(Collision col){
19.	 //access the colliding object and change its color

20.	 col.collider.renderer.material.color = color;
21.	 }

22.

23.	 //TO handle collision with triggers
24.	 void OnTriggerEnter(Collider col){
25.	 col.renderer.material.color = color;
26.	 }

27.	}

Listing 40: A script for handling collisions

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

131

Physics Simulation

This script allows us to select a color from the inspector, and sets this color to the material of the object
when the game starts. For example, we can set the colors for the four balls to red, yellow, green, and
blue (from left to right). We have two functions to handle two different types of collisions. The first one
is OnCollisionEnter(), which is called whenever the ball hits a solid collider. This function is called only
once upon the first contact between the two colliding objects. When OnCollisionEnter() is called, it is
provided with a reference to collision data through col variable. This variable allows us to access the other
object involved in the collision by calling col.collider. In this case, we simple access the renderer of the
other object and change its color to match the color of the ball. Similarly, OnTriggerEnter() function is
called when the ball hits a trigger collider (in our case the upper non-blocking plane). One difference
regarding OnTriggerEnter() is the parameter provided to it. Since there are no detailed collision data,
the variable col refers to the collider of the other object directly. Therefore, we are able to directly access
the renderer and change its color.

Before starting the game, we need to vary the falling speed of the four balls. One possible method is
to set a different drag to each one of them. When the game starts the balls start to fall down because
of gravity. Whenever a ball hits a plane, it changes its color to match the color specified in ColorBall
script. Illustration 51 shows a screen shot during game run. The final result can be seen in scene15 in
the accompanying project.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

132

Physics Simulation

Illustration 51: Handling collisions and changing the colors of planes accordingly

4.2	 Physical Vehicles

In section 2.6, we implemented a simple car input system. In that system, we have simulated everything
manually: acceleration, braking, and steering. In this section we are going to use physics simulator to
construct a more realistic vehicle. This vehicle is going to have four wheels with suspension springs. First
step is to construct the vehicle like in Illustration 52.

Illustration 52: A simple vehicle constructed using basic shapes

Front and back axes can be made using cubes, as well as the cabin and the main body. On the other hand,
cylinders can be used to create the four wheels. After constructing the vehicle, we have to remove all
colliders from all parts, except the front and the back axes. This last step is necessary to create a custom
collision shape that helps our vehicle to behave better, as we are going to see soon. Finally, create an
empty object and add all these parts as its children, so that it looks like Illustration 53.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

133

Physics Simulation

Illustration 53: Vehicle parts added as children to an empty game object

Next step is to add a collider to the root object of the car. I am going to use a capsule collider, because it
prevents the car from flipping on its back and force it to roll until it gets back on its wheels. The capsule
must extend from the back to the front of the car. Vertically, the capsule must be raised so its bottom side
touches the bottom side of the car body. Another important modification we have to do is to increase
the size of the colliders of front and back axes. These colliders must be extended along the x axis until
the ends of the colliders reach the outer side of the wheels. The purpose of this collider extension is to
prevent the wheel collider from sinking into the ground accidentally (specially when the vehicle jumps
and lands on the wheels of one side), which may make the vehicle stuck with a wheel under the ground.
Illustration 54 shows the correct size and position of the collider.

Illustration 54: Capsule collider added to the vehicle

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

134

Physics Simulation

The second component we have to add to the root object of our vehicle is a rigid body. For out vehicle
we need a reasonable mass such as 1500 kilograms. Additionally, we need to set the drag to a relatively
high value, in order to give the feel of a heavy object that needs great force to move and stop after short
time when there is no force to move it. Therefore, we need a value such as 0.25 for the drag, and a value
of 0.75 for the angular drag. By default, Unity sets the center of mass of an object at the origin of the
local space of the object. However, sometimes we need to have a different center of mass. In case of our
vehicle, we need to set the center of mass a bit lower, in order to prevent the vehicle from flipping easily
when it turns right or left. To perform that, add an empty game object as a child to the game object of
the vehicle, name it CenterOfMass, and position it at (0, -0.5, 0.2). We are going to specify this position
as the center of the mass of our vehicle later on using a script.

Now we need to have realistic wheels for our vehicle. These wheels are going to be the core element
in the simulation, since they are responsible for applying motor torque, braking, steering, and spring
suspension. A unique property of Unity, which does not necessarily apply to other game engines, is the
separation between the physical wheel collider component and the visual wheel object. Therefore, we
are going to add an empty object for each wheel collider, instead of adding these collider directly to the
wheels we have made.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

135

Physics Simulation

The best practice when using wheel colliders is to add an empty game object as a child to the vehicle,
and add all empty objects of the wheel colliders as children to it. Wheel colliders in Unity have zero
width, therefore, we need two colliders for each one of the relatively wide wheels of our vehicle. One of
these colliders must be positioned near the outer side of the wheel, and the other near the inner side. To
summarize, we need an empty game object, and let’s call it WheelColliders, and additional eight empty
game objects added to it, as in Listing 55.

Illustration 55: Empty objects to hold wheel colliders. The names of the objects describe the
position of the collider

After adding a wheel collider component to each one of the empty objects, we need to set their properties.
Refer to Listing 56 for the appropriate values for wheel colliders.

You can select multiple objects and add the same component to each one of them at once. You may also set the properties
of the component while multiple objects are selected, so that your changes are applied to all selected objects.

Illustration 56: Setting the properties of the wheel colliders

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

136

Physics Simulation

There is a bunch of interesting properties to deal with: the mass of the wheel is set to 15, assuming that
each wheel wights 30 kilograms (remember that we have inner and outer collider for each wheel), the
radius can be adjusted visually by calibrating its value until the collider has the same size of the visual
wheel, and the suspension distance is the length of the suspension spring when it is fully extended and in
our case it is 25 centimeters. Suspension spring, forward friction, and sideways friction categories contain
a number of values that have to do with wheel damping and friction. Sometimes it takes a long time to
calibrate these values, so I am not going to discuss their details. However, it is useful to read about them in
Unity documentation or other sources on the internet; in order to learn how to configure them accurately
to achieve the desired result. Finally, we need to position the colliders correctly, like in Illustration 57.

Illustration 57: The correct positioning of the wheel colliders in the vehicle. The colliders are shown in white color

The vertical line of the collider in Illustration 57 represents the spring suspension distance for each wheel
collider. On the other hand, the circle shows the position of the collider when the spring is completely
pressed. Therefore, we must position the colliders so that the lower end of the line is at the same level
of the lowest part of the visual wheel. Before moving on, make sure that the complete hierarchy of your
vehicle matches the hierarchy in Illustration 58.

Illustration 58: The complete hierarchy of the vehicle

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

137

Physics Simulation

Our vehicle is now ready to be controlled, and therefore we need a number of scripts that work together
to give us an acceptable look and feel of a real car. First and major script is PhysicsCarDriver, shown in
Listings 41 through 43, which is going to provide basic functions of a controllable car. These functions
are independent from user input, which makes the script general to a degree that allows the car to be
controlled through AI driver. I have separated this script over multiple listings since it is relatively long.
Listing 41 shows the variables we need to control the vehicle.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class PhysicsCarDriver : MonoBehaviour {

5.

6.	 //All colliders of front wheels

7.	 public WheelCollider[] frontWheels;

8.

9.	 //All colliders of back wheels

10.	 public WheelCollider[] backWheels;

11.

12.	 //Car’s center of mass

13.	 public Transform centerOfMass;
14.

15.	 //Max torque of the motor
16.	 public float maxMotorTorque = 9500;
17.

18.	 //Braking power

19.	 public float brakesTorque = 7500;
20.

21.	 //Angle to rotate wheels when steering

22.	 public float maxSteeringAngle = 20;
23.

24.	 //steering rotation speed in degrees per second

25.	 public float steeringSpeed = 30;
26.

27.	 //maximum car speed in km/h

28.	 public float maxSpeed = 250;
29.

30.	 //maximum speed moving reverse

31.	 public float maxReverseSpeed = 20;
32.

33.	 //current steering position

34.	 float currensSteering = 0;
35.

36.	 //maximum car speed in rpm

37.	 float maxRPM, maxReverseRPM;
38.

39.	 //Input flags
40.	 bool accelerateForward,

41.	 accelerateBackwards,

42.	 brake, steerRight, steerLeft;

43.

Listing 41: Variables declarations for PhysicsCarDriver script

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

138

Physics Simulation

First of all we have two arrays of type WheelCollider, in order to reference the colliders of the front and
the back wheels of our vehicle. We need references to all colliders, since they are the place where we
control vehicle movement. Separating front and back wheels is necessary as the steering is going to be
applied to front wheels only. The next variable is centerOfMass, which is going to store a reference to
CenterOfMass empty object we have created earlier. The variables maxMotorTorque and brakesTorque
represent the magnitude of the force used to accelerate and decelerate the wheels. To control steering, we
use maxSteeringAngle and steeringSpeed. These two variables are going to be applied to front wheels only,
since we do not usually steer the back wheels. The last two public variables of the script are maxSpeed
and maxReverseSpeed, which set the speed limits of our vehicle when driving forward or backwards.

In addition to the public variables, we have currentSteering, which is used to store the current steering
angle of the front wheels. We have also maxRPM and maxReverseRPM, and we are going to use these
two variables to represent maxSpeed and maxReverseSpeed in terms of rotations per minute. Having the
speed in such unit is necessary, since wheel collider uses this unit to express the speed. Finally, we have
a set of flags that store the current control state of the vehicle. If there is a command from the controller
(player or AI) to accelerate forward, then accelerateForward variable is set to true, otherwise it is going
to be false. Similarly, the other four flags represent the states of their relative commands. The next part
of the script is shown in Listing 42, which contains Start() and FixedUpdate() functions.

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

139

Physics Simulation

44.	 void Start () {

45.	 //Convert max speed to rpm

46.	 maxRPM =
47.	 KmphToRPM(frontWheels[0], maxSpeed);

48.	 maxReverseRPM =
49.	 KmphToRPM(frontWheels[0], maxReverseSpeed);

50.

51.	 //Set the center of mass for better car turning

52.	 rigidbody.centerOfMass =
53.	 centerOfMass.localPosition;
54.	 }

55.

56.	 //We use fixed update for physics
57.	 void FixedUpdate () {

58.	 //Update acceleration

59.	 if(accelerateForward){

60.	 foreach(WheelCollider wheel in frontWheels){

61.	 		 UpdateWheelTorque(wheel, maxMotorTorque);
62.	 }

63.

64.	 foreach(WheelCollider wheel in backWheels){

65.	 		 UpdateWheelTorque(wheel, maxMotorTorque);
66.	 }

67.	 accelerateForward = false;
68.	 } else if(accelerateBackwards){

69.

70.	 foreach(WheelCollider wheel in frontWheels){

71.	 		 UpdateWheelTorque(wheel, -maxMotorTorque);
72.	 }

73.

74.	 foreach(WheelCollider wheel in backWheels){

75.	 		 UpdateWheelTorque(wheel, -maxMotorTorque);
76.	 }

77.	 accelerateBackwards = false;
78.	 } else {

79.	 foreach(WheelCollider wheel in frontWheels){

80.	 		 UpdateWheelTorque(wheel, 0);
81.	 }

82.

83.	 foreach(WheelCollider wheel in backWheels){

84.	 		 UpdateWheelTorque(wheel, 0);
85.	 }

86.	 }

87.

88.	 //Update steering

89.	 if(steerRight){

90.	 UpdateSteering(steeringSpeed * Time.deltaTime);

91.	 steerRight = false;
92.	 } else if(steerLeft){

93.	 UpdateSteering(-steeringSpeed * Time.deltaTime);

94.	 steerLeft = false;
95.	 } else {

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

140

Physics Simulation

96.	 UpdateSteering(0);

97.	 }

98.

99.	 //Update brakes

100.	 if(brake){

101.	 foreach(WheelCollider wheel in frontWheels){

102.	 		 wheel.brakeTorque = brakesTorque;
103.	 }

104.

105.	 foreach(WheelCollider wheel in backWheels){

106.	 		 wheel.brakeTorque = brakesTorque;
107.	 }

108.	 brake = false;
109.	 } else {

110.	 foreach(WheelCollider wheel in frontWheels){

111.	 		 wheel.brakeTorque = 0;
112.	 }

113.

114.	 foreach(WheelCollider wheel in backWheels){

115.	 		 wheel.brakeTorque = 0;
116.	 }

117.	 }

118.	 }

119.

Listing 42: Start() and FixedUpdate() functions of PhysicsCarDriver script

In Start() function, we first convert maxSpeed and maxReverseSpeed from km/h to RPM. The conversion
is performed by KmphToRPM() function, which we are going to discuss in details shortly. The converted
values are stored in maxRPM and maxReverseRPM variables. The second important thing to do in Start()
is to change the center of mass of the rigid body, so it takes the new position from the local position of
centerOfMass.

After the initialization we move to the update function. This time we deal with a new variation of update,
which is FixedUpdate(). This function is guaranteed by Unity to give the same deltaTime at each iteration;
so it is used for tasks that depend on accurate timing such as physics simulation and collision detection.
Therefore, we perform all tasks related to car driving inside FixedUpdate(). In lines 59 through 86, we
check accelerateForward and accelerateBackwards flags. If the value of either flag is true, we apply the max
motor torque to front and back wheels. Notice that we apply the torque through UpdateWheelTorque()
function, which is responsible for checking RPM limits before applying the torque, as we are going to
see soon. After applying the torque we reset the corresponding flag to false. If both accelerateForward
and accelerateBackwards are false, this means that there is no command to move the car. Consequently,
we apply a torque of zero to all wheels.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

141

Physics Simulation

The same mechanism is used with steering in lines 89 through 97: if steerRight or steerLeft flag is set to
true, we apply the corresponding steering by calling UpdateSteering() function. However, if both flags are
false, we apply a zero steering to the front wheels. The details of UpdateSteering() functions are going to
be covered shortly. The last section of FixedUpdate() between lines 101 and 117 handles braking input.
If braking flag is true, brakesTorque is applied to all wheels, otherwise a brake torque of zero is applied.
A torque can be applied to a wheel collider through motorTorque variable. The negative value means
that we want the wheel to spin counter clockwise, hence moving the vehicle backwards. Unlike the case
of applying motor torque, brake torque does not need to check any conditions before being applied to
the wheels. This sounds logical if you recognize the fact that nothing bad happens when pressing the
brakes pedal of a stopped car. The last part of PhysicsCarDriver is shown in Listing 43, and it covers all
other functions of the script.

120.	 //Drive car forward

121.	 public void AccelerateForward(){

122.	 accelerateForward = true;
123.	 accelerateBackwards = false;
124.	 }

125.

126.	 //Drive backwards

127.	 public void AccelerateBackwards(){

128.	 accelerateBackwards = true;
129.	 accelerateForward = false;
130.	 }

131.

132.	 //Turn steering wheel to right

133.	 public void SteerRight(){

134.	 steerRight = true;
135.	 steerLeft = false;
136.	 }

137.

138.	 //Turn steering wheel to left

139.	 public void SteerLeft(){

140.	 steerLeft = true;
141.	 steerRight = false;
142.	 }

143.

144.	 //Apply braking to all wheels

145.	 public void Brake(){

146.	 brake = true;
147.	 }

148.

149.	 //Applies torque to the wheel and checks RPM limits
150.	 void UpdateWheelTorque(WheelCollider wheel, float torque){
151.	 wheel.motorTorque = torque;
152.	 if(wheel.rpm > maxRPM || wheel.rpm < -maxReverseRPM){
153.	 wheel.motorTorque = 0;
154.	 }

155.	 }

156.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

142

Physics Simulation

157.	 //Updates steering angle

158.	 void UpdateSteering(float amount){
159.	 if(amount != 0){
160.	 currensSteering += amount;
161.	 } else {

162.	 //Steering is released,

163.	 //return steering to straight

164.	 //steering dead zone is

165.	 //between -3 and 3 degrees

166.	 if(currensSteering > 3){

167.	 		 currensSteering -=
168.	 steeringSpeed * Time.deltaTime;

169.	 } else if(currensSteering < -3){

170.	 		 currensSteering +=
171.	 steeringSpeed * Time.deltaTime;

172.	 } else {

173.	 		 currensSteering = 0;
174.	 }

175.	 }

176.	 //Apply max and min steering angles

177.	 if(currensSteering > maxSteeringAngle){

178.	 currensSteering = maxSteeringAngle;
179.	 }

180.

181.	 if(currensSteering < -maxSteeringAngle){

182.	 currensSteering = -maxSteeringAngle;
183.	 }

184.	 //Apply steering angle to front wheels only

185.	 foreach(WheelCollider wheel in frontWheels){

186.	 wheel.steerAngle = currensSteering;
187.	 }

188.	 }

189.

190.	 //Converts Km/h tp RPM based on

191.	 //the radius of provided wheel

192.	 float KmphToRPM(WheelCollider wheel, float speed){
193.	 //Meters per hour

194.	 float mph = speed * 1000;
195.	 //Meters per minute

196.	 float mpm = mph / 60;
197.	 return mpm / (wheel.radius * 2 * Mathf.PI);

198.	 }

199.	 }

Listing 43: Control and other functions of PhysicsCarDriver script

AccelerateForward() is a public function that can be used by other scripts to set accelerateForward flag.
This function protects the script from a contradictory input by setting accelerateBackwards to false.
The same mechanism is used by AccelerateBackwards(), SteerRight(), SteerLeft() and Brake() functions.
UpdateWheelTorque() function takes a wheel collider and a torque amount to apply to it. After applying
the toque, it checks the new speed of the wheel in RPM. If the speed is greater than maxRPM or less
than -maxReverseRPM, a zero torque is applied to prevent the vehicle from exceeding its speed limits.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

143

Physics Simulation

UpdateSteering() function takes a float value in degrees, and adds it to currentSteering. If the passed value
is zero, the function returns the steering to the straight position by using steeringSpeed. The steering
dead zone is set between -3 and 3 degrees, so if the steering value is within these limits, it is going to
be set instantly to zero (straight). After setting the new value of currentSteering, the function checks the
limits by comparing currentSteering with maxSteeringAngle and -maxSteeringAngle. Finally, the value of
cuurentSteering is stored in steerAngle member of all wheel colliders in frontWheels.

The last function we are going to discuss in this script is KmphToRPM(). This function takes two
parameters: a wheel collider and a speed value expressed in km/h. The first step is to convert speed from
km/h to meter/minute and store the result in mpm variable. The second step is to convert the speed
from meter/minute to RPM. However, this conversion depends on the circumference of the wheel. The
circumference tells us how many meters the wheel moves during one complete rotation. Therefore, we
divide mpm by the circumference to get the speed in RPM and return it. After adding this script to the
root object of the vehicle, we are ready to move to our next script.

Now we need another script that enables the player to provide his input to control the vehicle. This script
is going to read input from the keyboard and invoke the corresponding functions from PhysicsCarDriver.
Listing 44 shows KeyboardCarController script, which handles player input.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

144

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class KeyboardCarController : MonoBehaviour {

5.

6.	 //Reference to car we are going to drive

7.	 PhysicsCarDriver driver;

8.

9.	 void Start () {

10.	 //Get the attached car driver

11.	 driver = GetComponent<PhysicsCarDriver>();
12.	 }

13.

14.	 void Update () {

15.	 //Use up and down arrows for acceleration

16.	 if(Input.GetKey(KeyCode.UpArrow)){

17.	 driver.AccelerateForward();

18.	 } else if(Input.GetKey(KeyCode.DownArrow)){

19.	 driver.AccelerateBackwards();

20.	 }

21.

22.	 //Use right and left arrows for steering

23.	 if(Input.GetKey(KeyCode.RightArrow)){

24.	 driver.SteerRight();

25.	 } else if(Input.GetKey(KeyCode.LeftArrow)){

26.	 driver.SteerLeft();

27.	 }

28.

29.	 //Use space for braking

30.	 if(Input.GetKey(KeyCode.Space)){

31.	 driver.Brake();

32.	 }

33.	 }

34.	}

Listing 44: A script to handle user input that controls the vehicle

This script is fairly simple; all it has to do is to read the state of keyboard keys and call the matching
function from PhysicsCarDriver attached to the same object (root of the vehicle). The last script we are
going to add to the vehicle is CarSpeedMeasure, which measures the current speed of the car in km/h
and prints it out for us in Unity’s console. This script is shown in Listing 45.

The output of the console can be see by clicking the lower left corner of Unity’s main window. Even if the console window
is closed, the last output line is always shown at the lower left corner.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

145

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class CarSpeedMeasure : MonoBehaviour {

5.

6.	 public WheelCollider wheel;

7.

8.	 void Start () {

9.

10.	 }

11.

12.	 void Update () {

13.	 //Print the speed in the console

14.	 print (GetCarSpeed());

15.	 }

16.

17.	 //Converts RPM to Km/h based on

18.	 //the radius of the wheel

19.	 float GetCarSpeed(){
20.	 //Meters per minute

21.	 float mpm = wheel.rpm * wheel.radius * 2 * Mathf.PI;
22.	 //Meters per hour

23.	 float mph = mpm * 60;
24.	 //Kilometers per hour

25.	 float kmph = mph / 1000;
26.	 return kmph;

27.	 }

28.	}

Listing 45: A script to measure current vehicle speed in km/h

Notice that the script needs a reference to one of the wheel colliders, since the measured speed is
based on the current RPM of the wheels. Once again we use the circumference of the wheel, in order
to calculate the distance traveled every complete rotation. Recall that we already have a camera script
for car racing games, which is CarCamera (Listing 13). You can attach this script to the main camera,
and set the root of the vehicle as the car to be followed by the camera. Now you have a vehicle that can
be controlled using physics simulator, and you are ready to take a ride. Do not forget to add a ground
before running the game, in addition to some obstacles like humps; in order to test how they effect the
vehicle when driving over them.

Now we are going to perform some cosmetic enhancements to our vehicle. The vehicle is already
functional and behaves as it should, but it does not reflect its state visually. First of all, we need to be
able to see the wheels spinning as the vehicle moves. Additionally, we need to visualize the steering angle
by turning the front wheels left or right. Finally, we have to visualize the effect of suspension springs by
moving the wheels up and down relative to the car body. The common thing between these three visual
enhancements is the fact that they are all applied to the visual wheels of the car. Therefore, we are going
to write a single script, CarWheelAnimator, and let it do the job for us. This script is shown in Listing 46.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

146

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class CarWheelAnimator : MonoBehaviour {

5.

6.	 //The actual wheel to read data from

7.	 public WheelCollider wheel;

8.

9.	 //Axis for vertical rotaion

10.	 public Transform steeringAxis;

11.

12.	 //Stores steering angle from last frame,

13.	 //in order to be able to reset Y rotation

14.	 //of the wheel

15.	 float lastSteerAngle = 0;
16.

17.	 //To save the original position at the position

18.	 Vector3 originalPos;

19.

20.	 void Start () {

21.	 //Register the original position of the wheel

22.	 originalPos = transform.localPosition;
23.	 }

24.

25.	 void LateUpdate () {

26.	 //Convert wheel speed in rpm to degrees per second

27.	 float rotationsPerSecond = wheel.rpm / 60;

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

147

Physics Simulation

28.	 float degreesPerSecond = rotationsPerSecond * 360;
29.

30.	 //Rotate around local y axis

31.	 transform.Rotate(0, degreesPerSecond * Time.deltaTime, 0);

32.

33.	 //Steering axis exists in front wheels

34.	 if(steeringAxis != null){
35.	 //Reset the steering to zero by sbtracting

36.	 //the steering value of last frame

37.	 transform.RotateAround(

38.	 steeringAxis.position,

39.	 steeringAxis.up,

40.	 -lastSteerAngle);

41.	 //Apply new steering value

42.	 transform.RotateAround(

43.	 steeringAxis.position,

44.	 steeringAxis.up,

45.	 wheel.steerAngle);

46.	 //Update last steering angle value for the next frame

47.	 lastSteerAngle = wheel.steerAngle;
48.	 }

49.

50.	 //Check if the wheel hits the ground

51.	 WheelHit hit;

52.

53.	 if(wheel.GetGroundHit(out hit)){

54.	 //Wheel hits the ground.

55.	 //Move the wheel up by spring pressing distance

56.	 //Use world space

57.	 float colliderCenter = hit.point.y + wheel.radius;
58.	 Vector3 wheelPosition = transform.position;
59.	 wheelPosition.y = colliderCenter;
60.	 transform.position = wheelPosition;
61.	 } else {

62.	 �//No hit, smoothly return wheel to its original position
63.	 Vector3 pos = transform.localPosition;
64.	 pos = Vector3.Lerp(transform.localPosition,
65.	� originalPos, Time.deltaTime);

66.	 transform.localPosition = pos;
67.	 }

68.	 }

69.	}

Listing 46: A script to animate the visual wheels based on the properties of the wheel colliders

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

148

Physics Simulation

We need to attach this script to each one of the four visual wheels of our vehicle. We have two variables
that need to be set from the inspector: wheel, which references the input wheel collider; from which
the data is going to be read (RPM, steer angle, and suspension), and steeringAxis; which is the axis of
vertical rotation of the visual wheel. This vertical rotation reflects the steer angle of the wheel, and hence
is needed only for the front wheels. Before discussing the details of the script, we have to add two new
empty objects to the hierarchy of our vehicles. These objects are SteeringAxis_L and SteeringAxis_R. As
the names suggest, these objects are going to be the axes for steering rotation, so they must be positioned
at the left and right ends of FrontAxis. Now we have to specify the appropriate source of data for each
one of the four wheels, as well as the appropriate steering axes for the front wheels.

Back to the script, we have two additional variables: lastSteerAngle, which stores the steering angle
from the previous frame, and originalPos, which stores the original position of the wheel when Start()
function is called. Since this script performs animation tasks, the best practice is to update it using
LateUpdate(); in order to make sure that all objects have updated state before animating them. The first
task is straightforward, which is the spinning of the wheels. All we have to do is to read RPM values
from the wheel collider, convert its value from minutes to seconds, and then use the converted value to
rotate the wheel around its local y axis (remember that the wheel is a cylinder laying on its side, so the
its local y axis goes from left to right). This rotation is performed in line 31.

If steeringAxis variable is not null, we update the steer angle of the wheel based on the steer angle of the
collider. This task is performed through two steps: reset and set. The first step is to reset the rotation
of the wheel back to straight position, which can be done by rotating the wheel around the local y axis
of steeringAxis by the amount of -lastSeerAngle. Now we have to set the new steer angle by rotating the
wheel around the same axis, but this time by amount equal to wheel.steerAngle, which is the current
steer angle of the collider. Finally, we store the value of current steer angle in lastSteerAngle, to be able
to reset the value in the next frame. Keep in mid that steeringAxis for the back wheels is null, so this
step is not applicable to these wheels.

Finally, we have to update the y position of the wheel based on the state of the suspension spring. If you
have already tested the vehicle, you might have noticed that some the wheels sink into the ground. This
is a result of applying a pressure on the suspension springs, which moves the wheel collider upwards for
a short time. However, we want to see something different: the wheel must remain on the ground, and
the car body alone must be lowered.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

149

Physics Simulation

To animate correctly, we have to know first whether the wheel is grounded. Therefore, we define in line
51 a variable of type WheelHit, which gives us details about the state of the wheel collider. The function
GetGroundHit() returns true if the wheel collider is currently grounded, and stores the details in hit by
using the keyword out. The variable hit.point stores the contact point between the wheel collider and the
ground. Therefore, if we add the y member of this point to the radius of the collider; we get the correct
y value for the position of the wheel. To keep thing simple, I am going to move the wheel in world
coordinates only. All we have to do is to update the y position of the wheel so it matches the current
center of the collider (lines 57 through 60).

In some cases, such as car jumping, the wheel collider does not touch the ground; which requires
us to return the wheel to its original position before applying the effect of the suspension spring. If
GetGroundHit() function returns false, then we know that the wheel is not on the ground. In this case we
return it smoothly to its original local position, which we have already stored in originalPos. Smoothing
transformations over several frames is essential for acceptable animation, so we are going to learn how
to implement it. The core function when smoothing is the Lerp() function, which exists for a number
of data types in Unity.

In this script we call Vector3.Lerp(), in order to smoothly return the wheel to its original position. Lerp()
function takes three arguments: Vector3 from, Vector3 to, and float t. If the value of t is zero, from vector
is returned, and if the value of t is 1, to vector is returned. If t = 0.5, the function returns the middle point
between to vectors. We call this function in line 64 and provide it with a small value (Time.deltaTime), so
we get a new point on the path between transform.localPosition and originalPosition. The returned point
is closer to transform.localPosition, so we store it in pos and use it as the new position of the wheel. As
a result, the wheel will keep moving smoothly towards originalPos, and eventually return to its original
position. Illustration 59 shows the difference between pressed and rest states of the suspension springs.
The final result can be found in scene16 in the accompanying project.

Illustration 59: Suspension springs at rest state (left) and while pressed (right). When springs are pressed wheel colliders sink
into the ground and the car body is lowered, while visual wheels are kept on the ground.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

150

Physics Simulation

4.3	 Physical player character

In this section we are going to create a character controller that with physical behavior. This character
can then be used for first person, third person, or even platformer input systems. The idea is to have
a capsule collider with a rigid body attached to it. This capsule is going to be controlled by applying
appropriate forces to it. To illustrate the physical character, I am going to make a first person input system.
Therefore, we need to have a capsule with the main camera attached to it as child, and positioned at the
top of the capsule. Let’s consider that our character has a weight of 70 kilograms, which can be set from
the rigid body component. Another important setting for the rigid body is to freeze the rotation on all
axes, which means that physics simulator cannot rotate the character but only move it.

Following the same methodology we used in section 4.2 with car driver, we are going to make a character
component that is totally isolated from user input. To control the character, we are going to write a second
script that takes user input and calls appropriate functions from the character controller. Listing 47 shows
PhysicsCharacter script, which we are going to attach to the capsule to turn it into a controllable character.

LIGS University
based in Hawaii, USA

▶▶ enroll by October 31st, 2014 and

▶▶ save up to 11% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

151

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class PhysicsCharacter : MonoBehaviour {

5.

6.	 //maximum jump height in meters

7.	 public float jumpHeight = 2;
8.

9.	 //Horizontal movement speed

10.	 public float movementSpeed = 8;
11.

12.	 //Position of the character’s feet

13.	 public Transform feet;

14.

15.	 //Input flags
16.	 bool walkForward, walkBackwards,

17.	 strafeRight, strafeLeft, jump;

18.

19.	 void Start () {

20.

21.	 }

22.

23.	 public void WalkForward(){

24.	 walkForward = true;
25.	 walkBackwards = false;
26.	 }

27.

28.	 public void WalkBackwards(){

29.	 walkBackwards = true;
30.	 walkForward = false;
31.	 }

32.

33.	 public void StrafeRight(){

34.	 strafeRight = true;
35.	 strafeLeft = false;
36.	 }

37.

38.	 public void StrafeLeft(){

39.	 strafeLeft = true;
40.	 strafeRight = false;
41.	 }

42.

43.	 public void Jump(){

44.	 jump = true;
45.	 }

46.

47.	 public void Turn(float amount){
48.	 transform.RotateAround(Vector3.up, amount);

49.	 }

50.

51.	 //Fixed update is better with physics

52.	 void FixedUpdate () {

53.	 //Player can direct character only

54.	 //when it is on the ground

55.	 //or stuck somewhere with near-zero vertical velocity

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

152

Physics Simulation

56.	 Vector3 velocity = rigidbody.velocity;
57.	 if(OnGround() || (velocity.y >= 0 && velocity.y < 0.1f)){
58.	 //Reset velocity on x and z to zero

59.	 velocity.x = velocity.z = 0;
60.

61.	 //update movement

62.	 if(strafeLeft){

63.			 //Move left

64.	 		 velocity += -transform.right * movementSpeed;
65.	 		 strafeLeft = false;
66.	 } else if(strafeRight){

67.			 //Move right

68.	 		 velocity += transform.right * movementSpeed;
69.	 		 strafeRight = false;
70.	 }

71.

72.	 if(walkForward){

73.			 //Move forward

74.	 		 velocity += transform.forward * movementSpeed;
75.	 		 walkForward = false;
76.	 } else if(walkBackwards){

77.			 //Move backwards

78.	 		 velocity += -transform.forward * movementSpeed;
79.	 		 walkBackwards = false;
80.	 }

81.	 }

82.

83.	 rigidbody.velocity = velocity;
84.

85.	 //Read jump input

86.	 if(jump && OnGround()){
87.	 //v2^2 – v1^2 = 2as
88.	 //v2 is zero (at max height)

89.	 //v1^2 = -2as
90.	 //v1 = sqrt(-2as)
91.	 float v1 =
92.	 		 Mathf.Sqrt(-2 * Physics.gravity.y * jumpHeight);
93.

94.	 �//Use momentum formula p=mv with up as velocity direction
95.	 rigidbody.AddForce(

96.			 Vector3.up * v1 * rigidbody.mass,

97.			 ForceMode.Impulse);

98.

99.	 jump = false;
100.	 }

101.

102.	 }

103.

104.	 //Checks whether the character is on the ground

105.	 public bool OnGround(){
106.	 //Cast a ray from feet position downwards.

107.	 //The length of the ray is 10 cm.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

153

Physics Simulation

108.	 //If it hits the ground,

109.	 //then the character is grounded

110.	 if(Physics.Raycast(

111.	 new Ray(feet.position, -Vector3.up), 0.1f)){

112.	 return true;

113.	 }

114.	 return false;

115.	 }

116.	 }

Listing 47: Character controller based on physics simulation

We can set the values of jumpHeight and movementSpeed values of the character to match our needs.
Additionally, we have the third variable playerFeet, which must reference an empty object that is a child
of the capsule. This object must be positioned at the bottom of the capsule, where the feet are supposed
to be. Let’s begin from the last function in the script, OnGround(), at line 105. This function tests whether
the character is currently standing on the ground. To perform this task, the function casts a ray using
Physics.RayCast() function. This functions needs a ray and optionally a maximum distance for that ray,
and tells whether this ray has hit something while traveling in its direction. In line 111 we create a new
ray that starts from the position of the feet and goes downwards. We limit the travel distance of this ray
to 10 cm only, so that it hits the ground only when the character is actually standing on it. If the ray hits
the ground, we return true to indicate that the character is currently grounded.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

154

Physics Simulation

In a similar implementation to PhysicsCarDriver, we declare a number of flag variables that describe the
current control state of the character. Each one of these variables has a corresponding function that can
be called to set its value. For example, calling WalkForward() sets the value of walkForward flag to true,
as well as setting the value of walkBackwards flag to false. The same rule applies to all other flags. One
interesting function is Turn(), which does not deal with any flags, but simple takes a value that represents
a rotation degree, and rotates the capsule around the y axis by the provided degree.

The last (and most important) function we need is FixedUpdate(), which applies the state of control flags
to the rigid body of the character. The first step is in line 56, in which we measure the current velocity
of the character and store it in velocity variable. The next step is to update the movement of the object
on x and z axes based on the state of walking and strafing flags. We assume that the character cannot
direct itself while flying in the air (i.e. during jumping), so we make sure it is either grounded or stuck
somewhere with a vertical velocity that is almost zero. This latter case can happen with non flat grounds
and other cases. For example, consider the case where the character stands over a small gap between two
boxes, like in Illustration 60. In this case OnGround() function will certainly return false, because the
ray will be cast down through the gab, and hence will pass more than 10 cm before hitting the ground.
However, we still want the character to be able to move, otherwise it is going to be stuck forever.

Illustration 60: The character in this case is not grounded. However, it must still be controllable

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

155

Physics Simulation

If controlling the character is allowed, we have to clear its current velocity on x and z axes, and then
apply the new velocity. Steps in lines 62 through 80 are similar to their counterparts in the previously
written FirstPersonControl script (Listing 9). The difference is in the implementation of the movement,
since we implement it this time by setting the velocity of the rigid body on x and z axes in accordance
to the control flags. In line 83, we store the newly computed velocity back into rigidbody.velocity, which
makes the physics simulator move the object based on this new velocity. Keep in mind that all these
steps did not touch the y value of the velocity, and hence have no effect on the jumping or falling state
of the character.

The next step at line 86 is reading jump input and applying jump if the character is grounded. Jumping
is implemented by applying a one-time force (pulse) to the character. This force must push the character
upwards in the air, until it reaches the specified jumpHeight and then starts to fall down. From a physical
point of view, our character is a projectile that is going to be thrown in the air with an initial speed.
As the time goes, this speed is going to be reduced until it reaches zero at the maximum height. After
that, the projectile begins to fall down again by the force of gravity. All we have to do is to compute
the correct initial velocity for the projectile, which depends its mass. This computation requires us to
dive into physics and remember some laws of projectiles. The following paragraph discusses in details
how can we calculate the force magnitude in order to reach the desired jump height. If you do not like
physics, you are free to skip it.

We use the projectile formula, , where v2 is the velocity of the objects when it reaches its
maximum height, is the initial velocity of the object when it leaves the ground, a is the acceleration,
and s is the maximum height the object reaches. In our case, v1 is the sole unknown we need to work out
for. At the maximum height, the velocity of the object reaches zero before it starts to fall, hence .
s in our case is the value of jumpHeight, which is also known to us. As the object goes up, it loses its
velocity due to the acceleration of its weight, which is the acceleration of the gravity (). By
working out for , we get , which is expressed in lines 91 and 92 in the script. Since jump
force is a momentum that is applied once, we can use the momentum formula to compute the
amount of the force we need to add to the rigid body of the object. This formula is expressed in line 96.
We call rigidbody.AddForce() at line 95, which is used to add a force to the rigid body. After adding the
appropriate jump force, we reset jump flag to false.

Now we need a script to read the input from the player and call the functions of the character to control
it. This script is FPSInput shown in Listing 48.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

156

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class FPSInput : MonoBehaviour {

5.

6.	 //Mouse look speed on both axis

7.	 public float horizontalMouseSpeed = 0.9f;
8.	 public float verticalMouseSpeed = 0.5f;
9.

10.	 //Max allowed cam vertical angle

11.	 public float maxVerticalAngle = 60;
12.

13.	 //Mouse position in previous frame,

14.	 //important to measure mouse displacement

15.	 private Vector3 lastMousePosition;

16.

17.	 //Store camera transform

18.	 private Transform camera;

19.

20.	 //The character to control

21.	 PhysicsCharacter character;

22.

23.	 void Start () {

24.	 character = GetComponent<PhysicsCharacter>();
25.	 lastMousePosition = Input.mousePosition;
26.	 //Find camera object in children

27.	 camera = transform.FindChild("Main Camera");
28.	 }

29.

30.	 void Update () {

31.	 //Step 1: rotate cylinder around global Y

32.	 //axis based on horizontal mouse displacement

33.	 �Vector3 mouseDelta = Input.mousePosition – lastMousePosition;
34.

35.	 character.Turn(mouseDelta.x *

36.	 horizontalMouseSpeed *

37.	 Time.deltaTime);

38.

39.	 //Get current vertical camera rotation

40.	 float currentRotation = camera.localRotation.eulerAngles.x;
41.

42.	 //Convert vertical camera rotation from range [0, 360]

43.	 //to range [-180, 180]

44.	 if(currentRotation > 180){

45.	 currentRotation = currentRotation – 360;
46.	 }

47.

48.	 //Calculate rotation amout for current frame

49.	 float ang =
50.	 -mouseDelta.y * verticalMouseSpeed * Time.deltaTime;

51.

52.	 //Step 2: rotate camera around it’s local X

53.	 //axis based on vertical mouse displacement

54.	 //First check allowed limits

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

157

Physics Simulation

55.	 if((ang < 0 && ang + currentRotation > -maxVerticalAngle) ||
56.	 (ang > 0 && ang + currentRotation < maxVerticalAngle)){
57.	 camera.RotateAround(camera.right, ang);

58.	 }

59.

60.	 //Update last mouse position for next frame

61.	 lastMousePosition = Input.mousePosition;
62.

63.	 if(Input.GetKey(KeyCode.A)){

64.	 character.StrafeLeft();

65.	 } else if(Input.GetKey(KeyCode.D)){

66.	 character.StrafeRight();

67.	 }

68.

69.	 if(Input.GetKey(KeyCode.W)){

70.	 character.WalkForward();

71.	 } else if(Input.GetKey(KeyCode.S)){

72.	 character.WalkBackwards();

73.	 }

74.

75.	 if(Input.GetKeyDown(KeyCode.Space)){

76.	 character.Jump();

77.	 }

78.	 }

79.	}

Listing 48: A script to read user input and control the physics character

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

158

Physics Simulation

We have already discussed most of the functions in a similar script, which is FirstPersonControl shown in
Listing 9. The two scripts handle the camera movement in the same way. However, FPSInput depends on
PhysicsCharacter, and cannot control the character directly by displacing it. You can notice the difference
between the two scripts in lines 61 through 77 of FPSInput. In these lines, we use player input to call
functions from PhysicsCharacter script, which must be attached to the same object. Before testing your
character, it is a good idea to disable the renderer of the capsule. A complete physics character can
be found in scene17 in the accompanying project. It is worth pointing out that if you add some basic
shapes with rigid bodies and adequate masses, you would be able to push them and move them using
the physics character.

4.4	 Ray cast shooting

In this section we are going to extend the first person character we made in section 4.3, by giving it the
ability to shoot bullets. This time we are going to learn a new technique to implement shooting, which
is ray casting. We have already dealt with a simple usage of ray casting to test character grounding.
However, in this section we need more detailed information about the result of ray casting. Let’s begin
by adding a simple gun model and a crosshair for the character. These two objects must be added as
children for the camera, and must be adjusted to give the first person view. When the game runs, the
gun and the crosshair should appear as in Illustration 61.

Illustration 61: A simple gun and a crosshair made of basic shapes and added to the first person camera

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

159

Physics Simulation

As you would expect, we are going to handle mouse left-click as fire command. When the player fires
the weapon, he casts a ray towards the aim position of the crosshair. This ray is the bullet fired from the
weapon, and we are going to be able to check if it hit something and handle the hit. The main script in
shooting mechanism is RaycastShooter, shown in Listing 49. Before discussing the details of the script,
we need to know a number of basic properties of the ray cast shooter, which are listed below:

1.	 The shooter casts one ray at a time.
2.	 The ray has a maximum range that can be set from the inspector.
3.	 There is a time gap between two consecutive ray casts (fire rate).
4.	 Ray shooter has vertical and horizontal thresholds of inaccuracy, which are expressed in terms

of maximum angle between the ray that passes through the center of the crosshair and the
actual ray cast by the shooter. Each time a ray is cast, it is going to be rotated around x and y
axes by a random value between positive and negative values of the threshold.

5.	 The shooter has a configurable value for damage caused by its bullets. This value represents
the maximum damage when the target is at zero distance from the shooter. The damage power
decreases as the distance between the shooter and the target increases, until it reaches zero at
the maximum range of the shooter.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

160

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class RaycastShooter : MonoBehaviour {

5.

6.	 //How far can each bullet travel

7.	 public float maxRange = 100;
8.

9.	 //how many seconds to wait between two consecutive shoots

10.	 public float shootRate = 0.1f;
11.

12.	 //vertical inaccuracy in degrees

13.	 public float verticalInaccuracy = 1;
14.

15.	 //horizontal inaccuracy in degrees

16.	 public float horizontalInaccuracy = 1;
17.

18.	 //Bullet damage from zero-distance

19.	 public float power = 100;
20.

21.	 //Possition and direction of casted rays

22.	 public Transform muzzle;

23.

24.	 //Last time shooting is performed

25.	 float lastShootTime = 0;
26.

27.	 //Store last inaccuracy vector

28.	 Vector2 inaccuracyVector;

29.

30.	 void Start () {

31.

32.	 }

33.

34.	 void Update () {

35.

36.	 }

37.

38.	 //Shoot a bullet using ray cast

39.	 //return true if a bullet has been shot

40.	 public void Shoot(){

41.	 if(Time.time – lastShootTime > shootRate){
42.	 //Get some random values for inaccuracy

43.	 inaccuracyVector.y = Random.Range(
44.	 -horizontalInaccuracy,

45.	 horizontalInaccuracy);

46.

47.	 inaccuracyVector.x = Random.Range(
48.	 -verticalInaccuracy,

49.	 verticalInaccuracy);

50.

51.	 //Rotate the muzzle to apply inaccuracy

52.	 muzzle.Rotate(inaccuracyVector.x, 0, 0);

53.	 muzzle.Rotate(0, inaccuracyVector.y, 0);

54.

55.	 //A variable to store hit data

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

161

Physics Simulation

56.	 RaycastHit hit;

57.

58.	 //Perform the ray cast

59.	 if(Physics.Raycast(

60.	 new Ray(muzzle.position, muzzle.forward),

61.	 out hit, maxRange)){

62.

63.	 //Overwrite hit.distance
64.	 //with the value of scaled damage

65.

66.	 hit.distance =
67.	 power * (1 – (hit.distance / maxRange));
68.	 hit.transform.SendMessage(

69.	 "OnRaycastHit", hit,
70.	 �SendMessageOptions.DontRequireReceiver);
71.

72.	 }

73.

74.	 //return muzzle to its original rotation

75.	 muzzle.Rotate(-inaccuracyVector.x, 0, 0);

76.	 muzzle.Rotate(0, -inaccuracyVector.y, 0);

77.

78.	 //Register last shooting time

79.	 lastShootTime = Time.time;
80.

81.	 //Inform other scripts that shooting happened

82.	 SendMessage("OnRaycastShoot",
83.	 SendMessageOptions.DontRequireReceiver);
84.	 }

85.	 }

86.

87.	 //Get last inaccuracy

88.	 public Vector2 GetLastInaccuracyVector(){

89.	 return inaccuracyVector;

90.	 }

91.	}

Listing 49: Ray cast shooting scrip

First variables represent shooting properties mentioned earlier, which are maxRange, shootRange,
verticalInaccuracy, horizontalInaccuracy, and power. The variable muzzle represent to the position and
direction of the ray that is going to be cast. To apply the fire rate, we need to store the time of the last
ray cast. The variable lastShootTime is where we are going to store this value. Each time a ray is cast, we
generate two random values for the angles of inaccuracy, and store these values in inaccuracyVector for
later use. Inaccuracy mechanism is going to be covered in details soon.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

162

Physics Simulation

The main function of this script is Shoot(), in which the ray casting is performed. Before shooting, the
function checks whether minimum time gap between two consecutive shoots has already passed. If this
is true, it generates two random numbers for x and y inaccuracy angles. The horizontal inaccuracy is
a random value between -horizontalInaccuracy and +horizontalInaccuracy, and, similarly, the vertical
inaccuracy is generated in the range [-verticalInaccuracy, +verticalInaccuracy]. The generated random
values are stored in x and y members of inaccuracyVector. Initially, the muzzle must be positioned so
that its positive z axis points forward towards shooting direction. Before shooting, we rotate the muzzle
around its local x and y axis by the values of the two generated inaccuracy angles.

After performing inaccuracy effect, we are now ready to perform the actual shooting. The variable hit
declared in line 56 is the place were hit data are going to be stored (if there is a hit surely). In line 59
through 61 we call Physics.RayCast(), in order to perform shooting. The ray starts from the position
of the muzzle and heads towards the direction of its positive z axis. The variable hit is provided as
store place for hit data using the keyword out. This keyword marks an output parameter, unlike input
parameters we are used to use when calling functions. In other words, the function Physics.RayCast()
is going to set the value of hit, instead of reading its value. Finally, we tell the function that the length
of the ray must not exceed the value of maxRange. Lines 66 through 70 are executed if the ray has hit
something. The variable hit.distance stores the distance between ray generation position and the object
that has been hit by the ray. We need this distance in order to compute the scaled damage we are going
to apply to the hit object.

Remember that we store the damage of the bullet in the variable power, which is the damage applied to
the object when shot from zero-distance. As the distance between the shooter and the target increases,
the damage caused by the bullet decreases linearly, until it reaches zero at maxRange. When the bullet
hits the target, the damage it causes interests us more than the distance from which it has been shot.
Therefore, we compute the damage based on the distance, and them overwrite distance member of hit
variable with the scaled damage (lines 66 and 67). Finally, we inform the target that it has been hit by
sending OnRaycaseHit message to it and providing hit, which contains necessary data such as damage
and direction.

When shooting is completed, we have to return the muzzle back to its original rotation by rotating it again
with the negatives of random inaccuracy variables. After that, the current time is stored in lastShootTime,
and the message OnRaycastShoot is sent. This latter message can be useful if we need to do some stuff in
combination with shooting, such as playing a sound or an animation. We can also access the values of
last inaccuracy vector, by calling GetLastInaccuracyVector(). This can help us in camera shaking, or gun
animation as we do in RaycastShooterAnimator shown in Listing 50. The job of this script is to animate
the gun during shooting, so that the player gets on-screen feedback that the shooting actually happened.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

163

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class RaycastShooterAnimator : MonoBehaviour {

5.

6.	 //Distance to move backwards when animating

7.	 public float zDistance = 0.15f;
8.

9.	 //Reference to shooter

10.	 RaycastShooter shooter;

11.

12.	 //Original position
13.	 Vector3 originalPosition;

14.

15.	 //Original rotation
16.	 Quaternion originalRotation;

17.

18.	 void Start () {

19.	 shooter = GetComponent<RaycastShooter>();
20.	 originalPosition = transform.localPosition;
21.	 originalRotation = transform.localRotation;
22.	 }

23.

24.	 void LateUpdate () {

25.	 //Slowly return to original position and rotation

26.	 transform.localPosition =
27.	 Vector3.Lerp(transform.localPosition,

28.	 originalPosition, Time.deltaTime * 10);

29.

30.	 transform.localRotation =
31.	 Quaternion.Lerp(transform.localRotation,

32.	 originalRotation, Time.deltaTime * 10);

33.	 }

34.

35.	 void OnRaycastShoot(){
36.	 //Shooting happend: animate based on in

37.	 Vector2 rotation =
38.	 shooter.GetLastInaccuracyVector();

39.	 transform.Rotate(rotation.x, 0, 0);

40.	 transform.Rotate(0, rotation.y, 0);

41.	 transform.Translate(0, 0, -zDistance);

42.	 }

43.	}

Listing 50: A script to animate the gun during shooting

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

164

Physics Simulation

The script begins by storing the original local position and rotation of the gun. This step is necessary to
insure that we return the gun to its original position after animating it. The script also needs a reference
to RaycastShooter, in order to read inaccuracy values and use them in the animation. One additional
interesting variable here is zDistance, which is the amount of movement on the local z axis of the gun.
When the player shoots, the gun moves very fast (instantly, in fact) to this z position, in order to simulate
shooting reaction. After that, the gun return slowly and smoothly to its original position. In addition to
the movement along z axis, the gun rotates around its local x and y axes by the values of last inaccuracy
vector accessed through shooter.GetLastInaccuracyVector(). In LateUpdate(), we make sure that the gun
returns to its original position by calling the functions Vector3.Lerp() for the position and Quaternion.
Lerp() for the rotation. However, we multiply Time.deltaTime by 10 in order to get a faster return, which
is needed in case of high shoot rate.

Up to now, we have a physical first person character that can move, jump, push objects, and aim at
them using a gun with a crosshair. The remaining step in regard to character is giving the player the
ability to shoot using mouse button. This task is as simple as reading mouse input and calling Shoot()
function from RaycastShooter script. Listing 51 shows GunInput script, which reads mouse input and
triggers the shooter.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

165

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class GunInput : MonoBehaviour {

5.

6.	 //If true, the player don’t have to release

7.	 //the mouse button between shoots

8.	 public bool continuous = true;
9.

10.	 void Start () {

11.

12.	 }

13.

14.	 void Update () {

15.	 //Send Shoot message on mouse click

16.	 if(continuous){

17.	 if(Input.GetMouseButton(0)){

18.	 		 SendMessage("Shoot");
19.	 }

20.	 } else {

21.	 if(Input.GetMouseButtonDown(0)){

22.	 		 SendMessage("Shoot");
23.	 }

24.	 }

25.	 }

26.	}

Listing 51: A script to read left mouse button and activate shooting

The variable continuous allows us to control the type of shooting, so we can for example force the player
to release mouse button before shooting again. An interesting detail in this script is its independency from
RaycastShooter, which makes it reusable with other types of shooters or weapons. The only requirement
that other shooters must have is the ability to receive Shoot message sent by this script. The three scripts
RaycastShooter, RaycastShooterAnimator, and GunInput must be added to the gun game object. After
adding them, we have to set the muzzle for RaycastShooter, which is in this case the crosshair object.
We can set a scene to test shooting, which consists of some static targets as well as dynamic boxes and
balls with rigid bodies. The scene may look like Illustration 62.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

166

Physics Simulation

Illustration 62: A scene to test ray cast shooting

Now we have to specify what happens when an object is shot. Hit reaction can vary from an object to
another, depending on how does each object respond to OnRaycastHit message sent by RaycastShooter.
To illustrate the variance of hit reactions, we are going to write two scripts that handle OnRaycastHit
differently. The first one is BulletHoleMaker, shown in Listing 52. As the name suggests, this script creates
a bullet hole at the position of the hit. This hole is in fact an instance of a prefab, which is made of a
quad with bullet hole texture on it.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

167

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class BulletHoleMaker : MonoBehaviour {

5.

6.	 //Object to instantiate as hole
7.	 public GameObject holePrefab;
8.

9.	 //Seconds to wait before destroying hole object

10.	 public float holeLife = 15;
11.

12.	 void Start () {

13.

14.	 }

15.

16.	 void Update () {

17.

18.	 }

19.

20.	 //Receive OnRaycastHit message and generate hole at hit position
21.	 void OnRaycastHit(RaycastHit hit){
22.	 GameObject hole = (GameObject) Instantiate(holePrefab);
23.	 hole.transform.position = hit.point;
24.	 //If there is a rigid body, add the hole as a child to it

25.	 //This makes the hole move along with the hit object

26.	 if(hit.rigidbody != null){
27.	 hole.transform.parent = hit.transform;
28.	 }

29.	 //Since we use a quad, we rotate it towards inside
30.	 //This might be different if you use another shape

31.	 hole.transform.LookAt(hit.point – hit.normal);
32.	 //move it away from hit surface with a tiny amount

33.	 //This ensures that the hole is always on top

34.	 hole.transform.Translate(0, 0, -0.0125f);

35.

36.	 //Invoke destruction after a while

37.	 Destroy(hole, holeLife);

38.

39.	 //Report some data

40.	 print (name + " took damage of " + hit.distance);
41.	 }

42.	}

Listing 52: A script to generate a hole at the position of the bullet hit

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

168

Physics Simulation

If this script is attached to an object, it responds to OnRaycastHit by creating a hole at the position
of the ray hit. First step is to instantiate the prefab provided through holePrefab and position it at hit.
point, which is the position of the hit in world coordinates. If the hit object has a rigid body attached
to it, then there is a possiblity that the object moves or rotates at any moment in the future. Therefore,
it is necessary in this case to add the hole as a child of the hit object, so that the object and the hole
displace and rotate as one unit. An important question to answer is: how must the hole be directed? The
obvious answer is outwards. The variable hit.normal returns a vector perpendicular to the surface that
has been hit, where the direction of this vector points outside from the object. By adding this vector to
the position of the hit, we get the correct position and direction of the hole. However, the quad object
in Unity has only one rendered face, which is the face that looks at the negative direction of the local z
axis. Therefore, the positive z axis of the quad must look towards inside like in Illustration 63, in order
to have the rendered face visible. Consequently, we set hit.point – hit.normal as look point for the quad.

Illustration 63: Hole object made of quad, the positive z axis is looks inside so that the rendered face
looks outside

After rotating the hole correctly, we need to make sure that it is on top of the surface. This guarantees
that the hole is always in front of the object and hence visible. However, the distance must be very small,
otherwise the space between the surface and the hole becomes visible. In the case of the quad we use,
it is enough to move it along its negative z axis by 0.0125. Additionally, we need to keep the number of
holes in the scene limit in order to avoid performance issues. Therefore, we specify a life time for the
hole that can be set through holeLife. After creating, rotating, and positioning the hole, Destroy() is called
for the newly created hole and is given holeLife value as wait time before destruction. Remember that
we used the member distance of RaycastHit to store the scaled damage value computed using the power
of the bullet. This value is printed along with the name of the hit object so that you get an idea about
the scaled value of the damage. All we have to do now is to attach this script to any object we want, and
provide it with the prefab of the hole it should create.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

169

Physics Simulation

The second script we are going to write as a handler for OnRaycastHit is BulletForceReceiver. This
script, shown in Listing 53, is specific for objects that have rigid bodies, and hence have dynamic
physical behavior.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class BulletForceReceiver : MonoBehaviour {

5.

6.	 void Start () {

7.

8.	 }

9.

10.	 void Update () {

11.

12.	 }

13.

14.	 //Receive OnRaycastHit message and apply an impulse force
15.	 void OnRaycastHit(RaycastHit hit){
16.	 rigidbody.AddForceAtPosition(

17.	 -hit.normal * hit.distance, hit.point, ForceMode.Impulse);

18.	 }

19.	}

Listing 53: A script that receives ray cast hit and reacts by applying impulse force to the rigid body

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

170

Physics Simulation

When OnRaycastHit message is received, this script applies an impulse force of the rigid body once. The
function used to apply the force is AddForceAtPosition(), which allows us to specify a point to apply the
impulse on. This addition is important to give the realistic behavior we expect. For example, when the
shot is near the upper side of the hit object, the upper side must absorb the greatest amount of the hit
which might cause object to rotate. We take hit.point as the position where we want to apply the force.
The magnitude of the force is the scaled damage stored in hit.distance, and the direction is inside the
object -hit.normal (remember that hit.normal points outside from the object). You can experement the
full functional physics character as well as ray cast shooting in scene17 in the accompanying project.

4.5	 Physics projectiles

In section 3.1 we implemented a simple projectile system, which consisted of objects that move with
constant speed over the time. In this section we learn how to use rigid bodies with impulse forces to
create more realistic projectiles. Turning any rigid body into a projectile is as simple as adding an impulse
force with specific direction and magnitude to it. In this section, we are going to create a ball that has
a rigid body. This ball is going to be thrown on a stack of boxes in a mechanic similar to Angry Birds.
Illustration 64 shows the scene we need to setup for our projectile demo.

Illustration 64: A scene to demonstrate physics projectiles

To launch the ball (i.e. the projectile), the player has to hold the left mouse button on it and drag to the
left. As indication, a line will be drawn between the ball and the mouse position. The longer this line
is, the greater is the impulse force that launches the ball. This simple mechanism allows the player to
control both the direction and the magnitude of the force that launches the projectile with ease. One
more important note: even the scene is constructed in 3D, we are going to limit both movement and
rotation in 2D. This means that we must freeze the movement on z axis for all objects, as well as freezing
rotation around x and y axes. Not only that, we have also to make sure that all objects in the scene have
the same z value for position, to make sure they collide with each other. Additionally, we need to add
a new component called Line Renderer to the ball. This component draws a 3D line in the space that
passes through a provided list of positions in the space. Illustration 65 shows the properties of the line
renderer we need to add to the ball, which is going to be the indicator of launch direction and force.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

171

Physics Simulation

Illustration 65: Line renderer that draws launch direction indicator

You can use any material you want to render the line. Here I use a custom material called Line, which
is simply a gradient of blue and orange. The number of positions we need is 2: a start point and an end
point. The positions are by default zero, but we are going to change them according to user input. The
script PhysicsProjectile shown in Listing 54 must be added to the ball object to turn it into a controllable
projectile that can be launched using mouse drag.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

172

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class PhysicsProjectile : MonoBehaviour {

5.

6.	 //Launch force multiplier

7.	 public float launchPower = 300;
8.

9.	� //How long seconds to keep the projectile alive after launching?

10.	 //-1 = keep for infinity
11.	 public float lifeTime = 7;
12.

13.	 //Has the player hold the mouse down on the object?

14.	 bool mousePressed = false;
15.

16.	 //Has the projectile been already launched?

17.	 bool launched = false;
18.

19.	 //Position to generate launch power from

20.	 Vector3 launchPosition;

21.

22.	 //Line to show launch direction

23.	 LineRenderer line;

24.

25.	 //Reference to main camera,

26.	 //necessary for launch point specification with the mouse
27.	 Camera cam;

28.

29.	 void Start () {

30.	 //Get the attached line and find the camera
31.	 line = GetComponent<LineRenderer>();
32.	 cam = Camera.main;
33.	 }

34.

35.	 void Update () {

36.	 //We draw line after pressing the mouse on the projectile,

37.	 //and before launching the projectile

38.	 if(!launched && mousePressed){

39.	 //Create a ray that goes from

40.	 //camera position into the screen,

41.	 //and passes throug mouse pointer position

42.	 �Ray cameraRay = cam.ScreenPointToRay(Input.mousePosition);
43.

44.	� //Find the distance between the camera and the projectile

45.	 float dist = Vector3.Distance(
46.	 cam.transform.position, transform.position);

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

173

Physics Simulation

47.

48.	 //Set the launch position to the point on the ray that

49.	� //has the same distance from the camera as the projectile

50.	 launchPosition = cameraRay.GetPoint (dist);
51.

52.	 //Update line start and end positions

53.	 //Line starts at the position of the projectile

54.	 line.SetPosition(0, transform.position);

55.

56.	 //Line ends at the launch position

57.	 line.SetPosition(1, launchPosition);

58.

59.	 //After drawing the line, make sure that projectile

60.	 //and lanunch position has the same z position

61.	 launchPosition.z = transform.position.z;
62.	 }

63.	 }

64.

65.	 //Called when a mouse button is pressed on the object

66.	 void OnMouseDown(){
67.	 mousePressed = true;
68.	 }

69.

70.	 //Called when a mouse button is released

71.	 //and the same button has been already pressed in the object

72.	 void OnMouseUp(){
73.	 //Projectile must not has been alread launched

74.	 if(!launched){

75.	 //Set launched to true and destroy the line component

76.	 launched = true;
77.	 Destroy(line);

78.

79.	 //Destroy object after its lifetime

80.	 Destroy(gameObject, lifeTime);
81.

82.	 //Apply a force that is directly proportional with

83.	 //the distance between launch position and

84.	 //the position of the projectile

85.	 Vector3 forceDirection =
86.	 transform.position – launchPosition;
87.	 forceDirection = forceDirection * launchPower;
88.	 rigidbody.AddForce(forceDirection, ForceMode.Impulse);

89.	 }

90.	 }

91.	}

Listing 54: A script to control the rigid body with mouse and apply impulse force to it

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

174

Physics Simulation

The script has two public variables: launchPower, which is the magnitude of the launch force we are
going to multiply with distance specified by the player, and lifeTime which is the amount of time to keep
the projectile after launching it. In addition to public variables, we have two flags: mousePressed which
becomes true when the player presses the left mouse button over the projectile, and launched, which
stays false until the projectile has been launched. The second flag is necessary to ensure that the player
is allowed to launch the projectile only once. Additionally, we have launchPosition, which is the other
end of the line that specifies the direction of the force to be applied. Finally, we need references to both
the main camera and the line renderer that is attached to the object. The variable Camera.main gives us
the reference to the main camera.

Launching the projectile is handled through in OnMouseDown() and OnMouseUp() functions. After
holding the mouse during aiming, LateUpdate() handles updating the line that indicates launching
direction and magnitude. OnMouseDown() function is called when the player clicks the mouse over
the object, so we use this function to set mousePressed flag to true. After pressing the mouse over the
projectile, the player should move the mouse to set the launch direction. Therefore, we use LateUpdate()
function to update the indication line, which applies only if the projectile has not yet been launched
and the mouse is still pressed. The first step is convert the position of the mouse pointer from screen
coordinates to 3D space coordinates, in order to get the position of the other end of the line. To help us
in this task, the camera provides us with the function ScreenPointToRay().

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

175

Physics Simulation

To understand how does ScreenPointToRay() work, we have to imagine the mouse pointer as an object in
front of the camera. The resulting ray starts from the position of the camera, passes through the position
of the mouse pointer, and goes into the screen. After getting the ray, we need a point on that ray to be
the second position for the line we are going to draw. This point must have the same distance from the
camera as the projectile, which requires us to compute the distance between the camera and the projectile
first. The function cameraRay.GetPoint() takes a distance and returns a point on the ray that has the
provided distance from the origin of the ray, and this position is stored in launchPosition. The final step
is update the line by calling line.SetPosition(). Each time we call this function we give it the index of the
position and the point to set for that position. In the case of our line, we have only two positions: one
is the position of the projectile itself transform.position, and the other is for launchPosition, which is the
point on the ray we have computed. As a result, the line appears between the projectile and the mouse
pointer as in Illustration 66. Keep in mind, however, that we change the actual launch position so that
is has the same z value as the projectile, which guarantees generating a force in the correct direction.
Nevertheless, drawing the line between the projectile and the actual launch position will make it appear
to the player away from the mouse pointer, which is frustrating.

Illustration 66: Indication line drawn between the projectile and the mouse pointer

Now we have to handle releasing the mouse button and eventually launch the projectile. The event is
handled through OnMouseUp() function, and it is handled only once. If the value of launched is false, this
means that the projectile has not yet been launched. Therefore, the first thing we must do is to prevent
future handling of mouse up event by setting launched to true. Before launching the projectile we have
to destroy the line and invoke Destroy() for the projectile it self after the preset time. The next thing to
do is to get the direction of the launching force. This direction is the vector between mouse position and
projectile position, which we get by subtracting these positions and storing the result in forceDirection.
We then multiply the vector by launchPower to magnify its effect, and finally add it as impulse force to
the projectile. The last script to present is ProjectileGenerator, which is responsible for generating a new
projectile after destroying the previous one. This simple script is shown in Listing 55. Illustration 67
shows the projectile hitting the boxes, which is the result of the functional demo that can be found in
scene18 in the accompanying project.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

176

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class ProjectileGenerator : MonoBehaviour {

5.

6.	 //Prefab to generate

7.	 public GameObject projectile;
8.

9.	 void Start () {

10.	 //Try to generate a projectile once every second

11.	 InvokeRepeating("Generate", 0, 1);
12.	 }

13.

14.	 void Update () {

15.

16.	 }

17.

18.	 void Generate(){

19.	 //If there are no projectiles in the scene, generate one

20.	 PhysicsProjectile[] prjectiles =
21.	 FindObjectsOfType<PhysicsProjectile>();
22.	 if(prjectiles.Length == 0){
23.	 Instantiate(projectile,

24.	 transform.position,

25.	 transform.rotation);

26.	 }

27.	 }

28.	}

Listing 55: A script to continuously generate projectiles

Illustration 67: The effect of throwing the projectile on stacked boxes

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

177

Physics Simulation

4.6	 Explosions and destruction

This section has a special importance in developing action games, in which blowing up things and
destroying some parts of the environment is a core mechanic. Having a physics simulator helps making
realistic explosions, by giving us the ability to push object away with explosion force. The simulator
also makes it possible to build destructible structures that are affected by explosions. In this section we
are going to construct a simple building, which consists of building blocks. These blocks are affected
by explosion force, which makes the building partially or completely destructible using explosions. In
addition to being destructible, each block is going to have the ability to return to its original position
and hence reconstruct the building. To begin, we have to create a prefab that represents these building
blocks, and then make as many copies as we need. The building block we are going to use is a cube with
brick texture like in Illustration 68.

Illustration 68: Brick-textured cube to be used as building block for the destructible building

To build the prefab we need, first we have to add a rigid body component to it. However, this rigid
body is going to be frozen by Destructible script, which is shown in Listing 56. This freezing must hold
until an external force with enough magnitude moves the block. In our case, this external force will be
an explosion.

1.	 using UnityEngine;

2.	 //We have to import this library

3.	 using System.Collections.Generic;

4.

5.	 public class Destructible : MonoBehaviour {

6.

7.	 //We scan from the center of the object towards this direction

8.	 //in order to find a dependency
9.	 public Vector3 scanDirection;

10.

11.	 //Desructibles that depend on this one

12.	 List<Destructible> dependents = new List<Destructible>();
13.

14.	 //To store original constraints before freezing

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

178

Physics Simulation

15.	 RigidbodyConstraints original;

16.

17.	 void Start () {

18.	 //Try to find a destructible at the scan direction
19.	 //If it is found, then add self as dependent to it

20.	 RaycastHit hit;

21.	 Ray scanRay = new Ray(transform.position, scanDirection);
22.

23.	� if(Physics.Raycast(scanRay, out hit, scanDirection.magnitude)){

24.

25.	 Destructible dependency =
26.	 hit.transform.GetComponent<Destructible>();

27.

28.	 if(dependency != null){
29.	 dependency.dependents.Add(this);

30.	 }

31.	 }

32.

33.	 //Store the original constraints then freeze the rigid body

34.	 original = rigidbody.constraints;
35.	 rigidbody.constraints = RigidbodyConstraints.FreezeAll;
36.	 }

37.

38.	 void Update () {

39.

40.	 }

41.

42.	 //Destruct this destructible by restoring its original constraints

43.	 public void Destruct(){

44.	 rigidbody.constraints = original;
45.	 //Call Destruct() in dependents, and delay it a little bit

46.	 foreach(Destructible dependent in dependents){

47.	 if(dependent != null){
48.	 float time = Random.Range(0.0f, 0.01f);
49.	 dependent.Invoke("Destruct", time);
50.	 }

51.	 }

52.	 //Inform other scripts that destruction heppened

53.	 SendMessage("OnDestruction",
54.	 SendMessageOptions.DontRequireReceiver);
55.	 }

56.	}

Listing 56: A script for building blocks that construct a destructible structure

Before diving into the logic of the code, there is a couple of new things to introduce. First of all, we use
the keyword using in line 3 in order to import a new library into our code. This library is called System.
Collection.Generic. The details of the library are not as much important as knowing how to use it. By
bringing this library to our script, we are able to declare a List, which we do in line 12. The declaration
List<Destructible> means that this list accepts only one type of elements, which is Destructible. Lists are,
like arrays, collections of objects. However, they are dynamic and we can add as much elements to a list
as we need without having to worry about its capacity.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

179

Physics Simulation

The most two important variables in this class are scanDirection and dependents. To realize their
importance we have first to understand how the destructible building is built. When we arrange the
blocks in some order either vertically or horizontally, we must build relations between them. For instance,
a pillar like in Illustration 69. This pillar consists of 8 building blocks arranged vertically.

Illustration 69: A pillar made of 8 destructible building blocks

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

180

Physics Simulation

Logically, when the bottom most block is destructed, then the whole pillar must fall apart (unless you
want Super-Mario-like blocks that float in the air). The question is how to tell the physics simulator
that each block in the pillar depends on the one below it, and hence must be destructed when the
dependency is destructed. This is the job of scanDirection, which is a vector that starts from the center
of the block and goes in the specified direction. In case of the- pillar, this vector must point downwards
with a magnitude greater than 0.5, which is the distance between the center of the block and its bottom
face. Before discussing the mechanism of scanDirection, it is important to understand the dependency
structure. For each destructible, there is a list of other destructible objects that depend on it. When the
dependency is destructed, then all object in its dependents list must be destructed as well.

At the beginning of the game, and as we already know, Start() function is called. Upon start, each
destructible casts a ray with the direction and the magnitude specified in scanDirection. What the
destructible tries to do by casting this ray is to find a dependency. This dependency must be have
Destructible script attached, which is checked in line 28. If the condition is satisfied, the destructible
which has cast the ray adds itself to dependents list inside the destructible which the ray hit. In case of
the pillar shown in Illustration 69, scanDirection should have a value such as (0, -0.6, 0), so that each
scan ray is cast downwards. As a result, each block will add itself to dependents list of the block below
it, while the bottom most block isn’t going to be able to find any dependencies.

After building dependencies among building blocks, the next step is to freeze the block so it does not
get affected by physics simulation. Therefore, the rigidbody.constraints of the block are saved in original,
and then changed to RigidbodyConstraints.FreezeAll. This guarantees that both position and the rotation
of the block are conserved up to the moment we decide to allow them to be changed. The block remains
frozen until Destruct() function is called (or Destruct message is received). To destruct the block, the
first thing to do is to free it from any constraints by resetting rigidbody.constraints to its original value
stored in original. After that, the destruction must be propagated to all dependencies by calling Destruct()
for all elements in dependents list. However, it is better to delay the destruction by a tiny amount of
time, in order to give the sense of physical relation between the blocks. Finally, it won’t hurt if we send
an informative message to all other script connected to the block, telling them that destruction just
happened. This makes it possible to do some relevant effects, such as playing sound or making some
dust. Illustration 70 shows a simple building constructed with destructible building blocks.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

181

Physics Simulation

Illustration 70: A building constructed completely from destructible building blocks

The scanDirection for each block depends on the blocks around it. White arrows in Listing 71 indicate
scan directions of building blocks in left and right walls: each arrow starts from a block and points to
its dependency.

Illustration 71: Comparing block arrangement between left and right walls: the blocks of left wall scan down, left, or right,
while the blocks of the right wall scan towards bottom left

As a result, a dependency tree will be built between blocks, which specify what depends on what. The
tree that results from the above scans is shown in Illustration 72.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

182

Physics Simulation

Illustration 72: Dependency trees between building blocks: when the root destructs, the whole tree must eventually be
destructed. Roots are displayed as small squares

Now we want to be somehow able to perform the desired destruction on the building. To do this, we are
going to use a script that generates an explosion when the left mouse button is clicked. MouseExploder
script shown in Listing 57 is the second script we need to add to the prefab of our building block.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

183

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class MouseExploder : MonoBehaviour {

5.

6.	 //How strong is the explosion?

7.	 public float explosionForce = 40000;
8.

9.	 //Range of explsion effect

10.	 public float explosionRadius = 5;
11.

12.	 //Position of the explosion

13.	 //Relative to the position of the object

14.	 //Expressed in world space

15.	 public Vector3 explosionPosition = new Vector3(-1, 0, -1);
16.

17.	 void Start () {

18.

19.	 }

20.

21.	 void Update () {

22.

23.	 }

24.

25.	 //Perform explosion on mouse click

26.	 void OnMouseDown(){
27.	 //Get all rigid bodies

28.	 Rigidbody[] allBodies = FindObjectsOfType<Rigidbody>();
29.

30.	 //Calculate the position of the explosion

31.	 Vector3 explosionPos = transform.position;
32.	 explosionPos += explosionPosition;
33.

34.	 //Find bodies within radius, send destruction

35.	 //message in case they are destructible,

36.	 //and finally apply explosion force to them
37.	 foreach(Rigidbody body in allBodies){

38.	 float dist =
39.	 Vector3.Distance(

40.	 body.transform.position,

41.	 explosionPos);

42.

43.	 if(dist < explosionRadius){

44.	 body.SendMessage("Destruct",
45.	 SendMessageOptions.DontRequireReceiver);
46.

47.	 body.AddExplosionForce(

48.	 explosionForce, //Explosion strength

49.	 explosionPos, //Explosion position

50.	 explosionRadius);//effective radius

51.	 }

52.	 }

53.	 }

54.	}

Listing 57: A script that generates explosion force based on mouse click

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

184

Physics Simulation

The first thing you can notice in the script is the relatively high magnitude of explosionForce, which
is reasonable since we are talking about an explosion that can destroy a building. The radius in which
the explosion takes effect is set by explosionRadius, which means that only objects within this distance
are affected by explosion force. This script creates an explosion when a block is clicked. However, to
make the explosion more obvious and effective, we move for a short distance from the block position
and perform the explosion there. This distance is determined by explosionPosition, which is relative the
position of the target block that was clicked.

OnMouseClick() handles mouse click on the destructible block by adding explosion force to all surrounding
rigid body within the given radius. First step is to get all rigid bodies and store them in allBodies array.
After that, explosionPos is computed by adding explosionPosition relative position to the position of the
block. The for loop in line 37 iterates over all rigid bodies and finds the distance between each body and
the computed explosionPos. If this distance is less than explosionRadius, we send Destruct message to
the rigid body and then call AddExplosionForce(). AddExplosionForce() takes 3 arguments: the strength
of the explosion which is explosionForce, the position of the explosion which is explosionPos, and the
radius of explosion effect which is explosionRadius. The importance of sending Destruct message is to
unfreeze the rigid body, in case it has Destructible script attached to it. Without this step, the explosion
isn’t going to have any effect on the rigid body. Illustration 73 shows a demo explosion. Notice that the
effect of the explosion is purely physical, and has no visual effects such as fire or smoke.

Illustration 73: Effect of the explosion force on destructible blocks: the blocks are pushed away from the position of
the explosion, which is shown as bright point

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

185

Physics Simulation

To make our example more fun, I would like to add an interesting feature to our building blocks. What if
we become able to reconstruct the whole building after destroying it? This idea can be simply implemented
by storing the original position of each block at the beginning, and then returning it smoothly to its
position when, say, space bar is pressed. The script Returner does this interesting job when attached to
the prefab of the building block. This script is shown in Listing 58.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class Returner : MonoBehaviour {

5.

6.	 //Original position of the object
7.	 Vector3 originalPos;

8.	 //Original rotation of the object
9.	 Quaternion originalRot;

10.	 //Is the object currently moving to its original position?

11.	 bool returning = false;
12.

13.	 void Start () {

14.	 //Record original position and rotation

15.	 originalPos = transform.position;
16.	 originalRot = transform.rotation;
17.	 }

18.

19.	 void Update () {

20.

21.	 //When space is pressed, initialize returning

22.	 if(Input.GetKeyDown(KeyCode.Space)){

23.	 Return();

24.	 }

25.

26.	 if(returning){

27.	 //During return freese all constraints to prevent

28.	 //external forces from affecting the rigid body

29.	 if(rigidbody.constraints !=
30.	 RigidbodyConstraints.FreezeAll){

31.	 //Clear any linear or angular

32.	 // velocities to stop object

33.	 rigidbody.velocity = Vector3.zero;
34.	 rigidbody.angularVelocity = Vector3.zero;
35.	 //Now freeze the rigid body
36.	 rigidbody.constraints =
37.	 RigidbodyConstraints.FreezeAll;

38.	 }

39.

40.	 //Smoothly return position and rotation

41.	 //to their original values

42.	 transform.position =
43.	 Vector3.Lerp(transform.position, //from

44.	 originalPos, //to

45.	 Time.deltaTime * 3);//amount

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

186

Physics Simulation

46.

47.	 transform.rotation =
48.	 Quaternion.Lerp(

49.	 transform.rotation, //from

50.	 originalRot, //to

51.	 Time.deltaTime * 3);//amount

52.

53.	 //If the object is too near, manually set original values,

54.	 //and set returning to false

55.	 float remaining =
56. 			 Vector3.Distance(transform.position, originalPos);

57.	 if(remaining < 0.01f){

58.	 transform.position = originalPos;
59.	 transform.rotation = originalRot;
60.	 returning = false;
61.	 }

62.	 }

63.	 }

64.

65.	 //Return the object to its original position

66.	 public void Return(){

67.	 returning = true;
68.	 }

69.	}

Listing 58: A script to reset the position and rotation of building blocks when space is pressed

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

187

Physics Simulation

The first thing this script does is storing the original (initial) position and rotation of the block in
originalPos and originalRot variables. Notice that rotation is stored in a variable of type Quaternion.
During Update() we scan for space key press. If it is pressed, we call Return() function. This function
simply sets returning flag to true, in order to let the object move towards its original position in each
frame. If returning is true, the object must be moved towards originalPos and rotated towards originalRot.
Before performing the translation and rotation, we have to remove all forces and prevent them from
affecting the rigid body. Therefore, we ensure that the rigid body is frozen and clear all velocities affecting
it (lines 29 through 38). After that, we use Vector3.Lerp and Quaternion.Lerp to translate and rotate
the object smoothly. By multiplying Time.deltaTime by 3, we ensure a faster return. Finally, we find the
remaining distance to reach the original position, if it is less than 0.01, we directly assign the original
values of position and rotation to the transform. The final result can be experimented in scene19 in the
accompanying project.

4.7	 Breakable objects

In the previous section, we learned how to construct a building using destructible building blocks.
However, for smaller destroyable (or breakable) objects, we need a more appropriate approach. For
objects like boxes that player break in order to get items, or glass windows that collapse when shot and
turn into small pieces; we need a different method of destruction. This method can be used for one-
way destruction, in which the destroyed object cannot be constructed again. The idea is to remove the
original object from the scene, and instantly create a collection of pieces that are smaller in size and have
the same texture of the original object. These pieces can be made using prefabs as we are going to see.
Consider the building we constructed in the previous section, what about adding some glass windows?
First of all, we need a prefab for the window, which must be breakable (and destructible as well). The
glass block might look like Listing 47.

Illustration 74: Glass block to be used as breakable window

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

188

Physics Simulation

We need to add Destructible script to this window in order to have it behave like any other block in the
building. Additionally, we need to write a new script that turns this window into a breakable object.
Consequently, we are going to call this script Breakable, and it is shown in Listing 59.

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class Breakable : MonoBehaviour {

5.

6.	 //Objects to generate when broken (pieces)
7.	 public GameObject[] pieces;
8.

9.	 //How many times each piece should be generated?

10.	 public int pieceCopies = 5;
11.

12.	 //How strong this breakable explodes?

13.	 public float explosionPower = 10;
14.

15.	 //How long to keep pieces?

16.	 public float pieceLifetime = 10;
17.

18.	 void Start () {

19.

20.	 }

21.

22.	 void Update () {

23.

24.	 }

25.

26.	 //Break the breakable

27.	 public void Break(){

28.	 //Generate the pieces with spiecified count
29.	 foreach(GameObject piecePrefab in pieces){
30.	 for(int i = 0; i < pieceCopies; i++){
31.	 GameObject piece =
32.	 (GameObject)Instantiate(piecePrefab);
33.

34.	 //Get a random position within

35.	 //the borders of the object

36.	 Vector3 borders = transform.localScale;
37.	 Vector3 randPos;

38.

39.	 randPos.x =
40.	� Random.Range(-borders.x * 0.5f, borders.x * 0.5f);

41.

42.	 randPos.y =
43.	� Random.Range(-borders.y * 0.5f, borders.y * 0.5f);

44.

45.	 randPos.z =
46.	� Random.Range(-borders.z * 0.5f, borders.z * 0.5f);

47.

48.	 //Place the piece at the random position

49.	 piece.transform.position =
50.	 transform.position + randPos;

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

189

Physics Simulation

51.

52.	 Vector3 explosionPos = transform.position;
53.	 float explosionRad = transform.localScale.magnitude;
54.

55.	 piece.rigidbody.AddExplosionForce(explosionPower,

56.	 explosionPos,

57.	 explosionRad);

58.

59.	 //If life time is spiecified,
60.	 //destroy the piece after it

61.	 if(pieceLifetime > 0){

62.	 Destroy(piece, pieceLifetime);

63.	 }

64.	 }

65.	 }

66.

67.	 //Inform other scripts that the object has been broken

68.	 SendMessage("OnBreak", SendMessageOptions.DontRequireReceiver);
69.

70.	 //Finally, destroy the breakable

71.	 Destroy(gameObject);
72.

73.	 }

74.	}

Listing 59: A script to make an object breakable

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

190

Physics Simulation

Since we are going to replace this object with a number of pieces when broken, we need to provide the
prefabs of these pieces in pieces array. The variable pieceCopies specifies how many times each piece prefab
must be generated. For example if we have two prefabs and set pieceCopies to 5, we end up with a total
of 10 pieces when the object is broken. explosionPower determines how strong is the generated explosion
when this object brakes. This explosion is going to be used only to spread the pieces after destruction,
and have no effect on other objects near the breakable. Finally, we can set a time after which remove
the pieces from the scene using pieceLifeTime. If the value of this variable is zero or less, the pieces are
going to be permanent.

We call Break() function once whenever we want to break the object. This functions does three jobs:
generates the pieces, inform other scripts that breaking has happened by sending OnBreak message,
and finally destroys the object. The interesting part are the two nested foreach and for loops. The outer
loops iterates over all prefabs in pieces array, and the second one iterates pieceCopies times, in order to
instantiate the required number of objects from each prefab. The position where each piece is instantiated
is random, but it must fall within the borders of the original object. These borders are determined using
the local scale of the object. After moving the piece to its randomly generated position, we apply the
explosion force to it. Keep in mind that the explosion is positioned at the center of the original object.
As a result, all pieces will be pushed away from the center by the explosion force. When the piece is
ready, we check whether pieceLifeTime is greater than zero, and eventually destroy the piece after the
specified time. Once all pieces are generated, we send OnBreak message to inform other scripts that the
object has been broken, and then destroy the original object.

In Unity, calling Destroy does not immediately destroy the object. The destruction is rather delayed until the end of the
frame. In our case, this gives other scripts attached to the breakable object the chance to respond to OnBreak message.

To activate these breakable windows in the building we made in scene19, we must add a script that works
as a bridge between Destructible and Breakable scripts. This script must be added to breakable objects
in order to send Break message when OnDestruction message is received. The script BreakOnDestruct
is shown in Listing 60. The complete building with destructibles and breakables is in scene19 in the
accompanying project.

http://bookboon.com/

Download free eBooks at bookboon.com

A Practical Introduction to
3D Game Development

191

Physics Simulation

1.	 using UnityEngine;

2.	 using System.Collections;

3.

4.	 public class BreakOnDestruct : MonoBehaviour {
5.

6.	 void Start () {

7.

8.	 }

9.

10.	 void Update () {

11.

12.	 }

13.

14.	 //Simply receive destruction message

15.	 //and send break message

16.	 void OnDestruction(){
17.	 �SendMessage("Break", SendMessageOptions.DontRequireReceiver);
18.	 }

19.	}

Listing 60: A simple script that receives OnDestruction message and reacts by sending Break message

Exercises

1.	 The vehicle we made in section 4.2 is a four-wheel drive vehicle. Change it to two-wheel drive
so that only the back wheels are connected to the motor.

2.	 Create two boxes with rigid bodies and make the vehicle we made in section 4.2 carry them
as it moves. What are the necessary changes you have to make on the vehicle in order to be
able to carry such objects?

3.	 Implement a transmission control for the vehicle in section 4.2, so that the player can change
the speed manually. Remember that a higher shift increases the maximum speed and decreases
motor torque. Use A key to shift up and Z key to shift down. Implement at least 4 different speeds.

4.	 Use a modified version of RaycastShooter to implement a shotgun. This shotgun must be usable
with GunInput script, and must cast at least 5 rays in each shot. These rays must originate from
the muzzle and diffuse randomly by some degrees on x and y axes. Finally, disable continuous
shooting for the shotgun.

5.	 Write a script that destroys the object if it takes a shot with damage more than 50. Add your
object to scene17 and test it.

6.	 Construct a tower like in Illustration 75, and modify scan directions of the destructible blocks
to build logically correct relations. For example, the whole tower must fall when the pillar
is destructed.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

A Practical Introduction to
3D Game Development

192

Physics Simulation

Illustration 75: The tower of Exercise 6

7.	 Create a breakable wood box that breaks when it receives OnRaycastHit message of
RaycastShooter (Listing 49 in page 128). You need to use Breakable script from Listing 59
(page 150). Use pieces of appropriate numbers and sizes. As a plus, try to add a permanent
piece that represents valuable object for the player.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

